TOTAL COST OF OWNWRSHIP

CONVENTIONAL

DRIVERS COMPARISON

Conventional vs Hybrid Empty Container Handler

HYBRID

CONVENTIONAL

POWER UNIT

Engine

Larger Engine running at highly variable speeds. Overhaul required between 15000 & 20000 w/h. 20 litres engine oil (each 500 w/h) Larger more expensive filter. 2 year/4000 w/h warranty

Transmission

With Torque converter and gearbox. Overhaul required between 12000 & 15000 w/h. 51 litres hydraulic oil (each 1000 w/h) plus oil filter change 2 year/4000 w/h warranty

HYBRID

Engine

Smaller Engine running at constant speeds. Overhaul required at 20000 w/h.
15 litres engine oil (each 500 w/h) Smaller less expensive filter 2 year/4000 w/h warranty

Generator Maintenance Free 5 years- 15000 w/h warranty

SuperCapMaintenance FreePack5 years - 15000 w/h
warranty

CONVENTIONAL

LIFTING SYSTEM /1

Hydraulic Pumps vs Electric Motors

Hydraulic Pumps power the Hydraulic Cylinders by forcing oil in high pressure (300 bar) through Distribution Valves in Conventional Liftrucks.

The lifting function in Hy-lift is instead performed by **Electric Motors** that power the Winches, having received the electric energy though the respective Inverters (Controllers)

HYBRID

Hydraulic Pumps (VD / piston Type) Efficiently working until 20.000 w/h, Hoses replacement at 15000 w/h , 2 Years / 4000 w7h warranty Electric Motors
(Permanent Magnets Type)

Machine Lifetime Isasting, Maintenance Free 5 Years / 15000 w/h warranty

CONVENTIONAL

Hydraulic Distribution Valve

Efficiently working until 20.000 w/h Hoses replacement at 10,000 w/h 2 Years / 4000 w7h warranty

LIFTING SYSTEM /2

Hydraulic Distribution Valve vs Inverters

Hydraulic Distribution Valve (1) in Conventional Liftrucks is the device that sends to the Lift Cylinders the Oil in pressure that powers the them to lift the mast and the spreader.

The **Inverters (or Controllers) (2)** in the Hy-Lift are the devices that send the Electric Power to the Electric Motors Of the Winches, which pull the ropes that lift the mast and the spreader

HYBRID

Inverters (Controllers)

Machine Lifetime duration Maintenance Free 5 Years / 15000 w/h warranty

LIFTING SYSTEM /3

Hydraulic Cylinders vs Winches

The **(2) Hydraulic Cylinders** are the gears that in Conventional Liftrucks actually perform the mechanical action that lifts the mast and the spreader

The **(2) Winches** are the gears thatin the Hy-Lift actually perform the mechanical action that Lifts the mast and the spreader

Hydraulic Cylinders

Efficiently working until 30.000 w/h Hoses and Seals replacement each 10,000 w/h 2 Years / 4000 w/h warranty Winches Efficiently working until 20.000 w/h Maintenance Free 2 Years / 4000 w/h warranty

CONVENTIONAL

LIFTING SYSTEM /5

Chains vs Ropes

Steel Chains

Costly to buy and costly

to change. They also last much less than steel wire

ropes (6000 w7h max)

Steel chains also work

withsteel rollers which eventually have to be

replaced and which are also guite costly and

require lots of labor to be

replaced

Wire Ropes

Considerably cheaper than steel chains and lasting much longer(up to 12000 w/h) thanks to less friction and more even wear. They are also much simpler and cheaper to replace.

Wire ropes run on cheaper, maintenance free plastic pulleys that are also easy to replace

Wire Ropes are 6 times cheaper than Steel Chains over the course of 20,000 w/h exercize

HYBRID

	CONVENTIONAL	FUEL CONSUMPTION		JMPTION	HYBRID	
Conventional ECH	Application	Avg. Fuel		Hybrid ECH	Application	Avg. Fuel
Truck Type	Typology	Consumption		Truck Type	Typology	Consumption
6 High	75% Stacking / 25% Driving	9,0		6 High	75% Stacking / 25% Driving	4,0
Single Stack	(20 lifts = 40 cts / hour)	Litres/hour		Single Stack	(20 lifts = 40 cts / hour)	Litres/hour
6 High	50% Stacking / 50% Driving	12,0		6 High	50% Stacking / 50% Driving	8,0
Single Stack	(12 lifts = 24 cts / hour)	Litres/hour		Single Stack	(12 lifts = 24 cts / hour)	Litres/hour
8 High	75% Stacking / 25% Driving	11,0		8 High	75% Stacking / 25% Driving	7,0
Single Stack	(20 lifts = 40 cts / hour)	Litres/hour		Single Stack	(20 lifts = 40 cts / hour)	Litres/hour
8 High	50% Stacking / 50% Driving	15,0		8 High	50% Stacking / 50% Driving	10,0
Single Stack	(12 lifts = 24 cts / hour)	Litres/hour		Single Stack	(12 lifts = 24 cts / hour)	Litres/hour
7 High	75% Stacking / 25% Driving	13,0		7 High	75% Stacking / 25% Driving	8,0
Double Stack	(20 lifts = 40 cts / hour)	Litres/hour		Double Stack	(20 lifts = 40 cts / hour)	Litres/hour
7 High	50% Stacking / 50% Driving	17,0		7 High	50% Stacking / 50% Driving	11,0
Double Stack	(12 lifts = 24 cts / hour)	Litres/hour		Double Stack	(12 lifts = 24 cts / hour)	Litres/hour

CONVENTIONAL	EMPTY CONTAINER HANDLER	HYBRID	
7 High Double Stack (2 over 6 x 8'6'')	Truck Type	7 High Double Stack (2 over 6 x 8'6'')	
75% Stacking / 25% Driving (20 lifts = 40 cts / hour)	Application	75% Stacking / 25% Driving (20 lifts = 40 cts / hour)	
13,0 Litres/hour	Average Fuel Consumption (Litres / hour)	8,0 Litres/hour	
1,00 AUD / Litre	Australian Fuel Price	1,00 AUD / Litre	
4.000 w/h each year	Average Truck workload x Year	4.000 w/h each year	
52.000 Litres = 52.000 AUD each year	Average Fuel Consumption Per Truck x Year	32.000 Litres = 32.000 AUD each year	
260.000 Litres = 260.000 AUD	Total (Average) Fuel Consumption Over 5 years	160.000 Litres = 160.000 AUD	

100 = CVS FERRARI Conventional ECH Purchase Cost

- 12%

For Hybrid

over

Conventional

ECH

TOTAL COST OF OWNERSHIP OVER 20.000 Working Hours

(calculated on 40,000 working hours it would be - 40%)

The data collected on the field and analyze by **CVS FERRARI** show with all evidence that, the **HYBRID** ECH, as compared to **CONVENTIONAL POWER** machines has:

- about 20% higher Purchase Cost (^{Compared to a CVS Ferrari ECH} of equivalent specification
 about 40% less Fuel Consumption
- about 40% less Tires Expenditure
- about 50% less investment in Consumables
 about 40% less Extraordinary Maintenance

